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Estimate of the truncation error of �nite volume discretization
of the Navier–Stokes equations on colocated grids
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SUMMARY

A methodology is proposed for the calculation of the truncation error of �nite volume discretizations
of the incompressible Navier–Stokes equations on colocated grids. The truncation error is estimated
by restricting the solution obtained on a given grid to a coarser grid and calculating the image of
the discrete Navier–Stokes operator of the coarse grid on the restricted velocity and pressure �eld. The
proposed methodology is not a new concept but its application to colocated �nite volume discretizations
of the incompressible Navier–Stokes equations is made possible by the introduction of a variant of the
momentum interpolation technique for mass �uxes where the pressure part of the mass �uxes is not
dependent on the coe�cients of the linearized momentum equations. The theory presented is supported
by a number of numerical experiments. The methodology is developed for two-dimensional �ows,
but extension to three-dimensional cases should not pose problems. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Finite volume methods, and especially those of 2nd-order accuracy, are very popular for the
solution of the Navier–Stokes equations because, by today’s standards, they o�er acceptable
accuracy on reasonably dense grids while being easy to implement. The truncation error is
the measure of the discrepancy between the discrete system that arises from application of
the �nite volume methodology and the original integral–di�erential equations.
For structured grids several truncation error estimators have been proposed for particular

discretization schemes, for example, in References [1–3]. They express the leading term of
the truncation error in terms of the derivatives of the �ow variables and the geometry of
the grid. These estimators are useful but they have the disadvantage that they are di�erent
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for each discretization scheme, and that they apply to the case of structured grids that have
been constructed from distributions of dimensionless variables with continuous derivatives.
For more general cases, a number of truncation error indicators have been proposed, as in
References [4–6], that is, quantities which resemble the truncation error and sometimes have
the same units, and are likely to be large in regions where the truncation error is large.
However, these quantities may fail to capture certain parts of the truncation error, for example,
the skewness-induced part if the indicator is constructed from a one-dimensional analysis as
in Reference [4]. Besides, an estimate would be more useful rather than an indication.
Multigrid solution methods which use the full approximation scheme (FAS) automatically

provide a quantity, the relative truncation error between the �nest and the immediately coarser
grid, which can easily be converted into a truncation error estimate if the order of the dis-
cretization is known, see References [7–9]. In fact, the truncation error estimator can be used
independently of the multigrid procedure. All that is required is a solution on a given grid,
and a coarser grid which is similar to the �ne grid. The equations need not be solved on the
coarse grid. This inspired the present authors to implement this estimator in the case of the
�nite volume discretization of the incompressible Navier–Stokes equations on colocated grids.

2. FINITE VOLUME DISCRETIZATION: BASIC PRINCIPLES AND NOTATION

Here it will be useful to introduce some notation, which is similar to that used in Reference [9].
The domain is decomposed into a �nite number of control volumes (CVs) using a grid. A
grid is denoted by a letter such as h, which will also be interpreted as the distribution of the
grid spacing in the domain.§ Therefore, grid ah is such that its spacing at each location equals
a times the spacing of grid h at the same location. Given a grid h, such a process of obtaining
grid ah will be referred to as systematic re�nement if a¡1, or systematic unre�nement if
a¿1. The set of all CVs of a grid h is denoted as Vh.
The set of all points in the region where the partial di�erential equation is de�ned will be

denoted by �, and G(�) will denote the set of functions which are de�ned on �. Analogously,
�h ⊂� will denote the set of centroids of the CVs of grid h and G(�h) will denote the set
of all functions de�ned on �h (grid functions). Also if �∈G(�) then �h ∈G(�h) will denote
the grid function such that �h(x)=�(x) for all x∈�h. Letters in bold italic such as x
refer to vectors in space. Also �h;P or (�h)P is the Pth component of the grid function �h,
that is, the value of �h at the centroid of CV P. The operator which samples the function
� at the CV centroids to return the grid function �h is given as I h0 : G(�)→G(�h), i.e.
I h0�=�h ⇔�h(x)=�(x) for all x∈�h. Since grid functions are usually used to represent
functions of continuous space one can de�ne the inverse operator I 0h : G(�h)→G(�) such that
I 0h �h=�⇒�(x)=�h(x) for all x∈�h. For the rest of the points x =∈�h, �(x) will assume a
value determined by a suitable interpolation, so I 0h is not unique. By similar reasoning a grid
function may be transferred from a grid h, say, to a grid k by the operator I kh : G(�h)→G(�k),
I kh = I

k
0 · I 0h . Again, a suitable interpolation must be chosen.

§The grid spacing need not be a physical spacing. For example, for structured grids it may be de�ned as the
spacing in the computational domain (as opposed to the physical domain). What is important is that it be de�ned
so that relations of the form (5)–(7) may be derived.
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Suppose a di�erential operator N that acts on a function � and returns a function N�. The
�nite volume method approximates the integral of the operator image over each CV by an
algebraic expression. If P is a CV covering a volume ��P then the �nite volume method
starts by deriving a relation of the form

1
��P

∫
��P

N� d� = (Nh�h)P + �h;P (1)

where Nh is an algebraic operator that approximates the average of N over each CV and �h is
the truncation error associated with Nh. The discretization should be such that the truncation
error tends to zero as h→ 0. In this case the left-hand side of (1) tends to the value of N� at
the centroid of P, and since �h → 0 so does (Nh�h)P due to (1). The smaller �h;P the better
Nh approximates the average of N at CV P. Equation (1) is written in a form which aids
theoretical understanding but in practice �nite volume methods usually construct an algebraic
expression which is equivalent to ��Nh in an e�ort to approximate

∫
��P

N� d�.
To solve the di�erential equation N�= b, where b is a known function, by the �nite volume

method, the equation is �rst integrated over each CV giving
∫
��P

N� d�=
∫
��P

b d� for each
P ∈Vh, and then substituting (1) for the left-hand side one obtains

(Nh�h)P + �h;P=
1

��P

∫
��P

b d� (2)

Equation (2) is exact and so if one was able to solve it one would obtain �h, the exact
values of � at the centroids of the CVs. Unfortunately, this is not possible since �h is not
known. Instead, one makes the assumption that the truncation error is small enough such that
dropping it would not change the solution of the system signi�cantly. Thus, instead of (2),
the following system is solved over each CV P:

(Nh�∗
h)P=

1
��P

∫
��P

b d� (3)

The solution �∗
h of system (3) is not the same as the exact solution �h. It di�ers by the

discretization error �h=�h−�∗
h . As the grid is systematically re�ned and h→ 0 the truncation

error will tend to zero and systems (2) and (3) will tend to become equivalent. Therefore, as
h→ 0⇒�∗

h →�h and �h → 0.
An analytic expression for �h can be derived as Nh is constructed from N using Taylor

series. The truncation error for CV P will be of the form

�h;P=
∞∑
k=p

(
1+nb∑
n=1

ck; nhkn

)
(4)

for some p¿1, where nb is the number of neighbours of CV P which participate in its �nite
di�erence stencil and hn is the characteristic size of each of these neighbours, including P
itself. The coe�cients ck; n will be functions of the derivatives of � in the vicinity of P. If
the grid is re�ned systematically then the characteristic sizes of the neighbours of P will be
proportional to the characteristic size h of P itself. In this case (4) may be written as

�h;P=
∞∑
k=p
ckhk (5)
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Through systematic re�nement the space originally occupied by CV P will become occupied
by more CVs. However, as the re�nement is systematic the truncation error for these new
CVs will be given by the same formula as for P. In addition, if the derivatives of � vary
continuously and the grid spacing h is small enough then the coe�cients ck will not be very
di�erent for the new CVs than for the original CV P. The change in the magnitude of the
truncation error will therefore be mostly due to the reduction in grid spacing h. As systematic
re�nement progresses the terms ckhk with k¿p of (5) will eventually become negligible
compared to the term cphp and the truncation error will be reduced almost proportionally to
hp. The discretization scheme Nh is characterized as pth order accurate.
For linear operators it can be shown that systematic re�nement causes the discretization

error to reduce at the same rate as the truncation error. The same has been demonstrated ex-
perimentally for the Navier–Stokes operator by many researchers, see, e.g. References [10, 11].
The above discussion is summarized by the following relations, which hold for a pth

order accurate discretization scheme, and which state that through systematic re�nement the
truncation and discretization errors, treated as functions of the continuous space �, retain their
shape but their magnitude tends to become proportional to hp:

I 0h �h ∈O(hp) (6)

I 0h �h ∈O(hp) (7)

3. TRUNCATION ERROR ESTIMATE

The truncation error estimator, which is the one used in References [8, 9], will now be brie�y
described. To estimate �h on grid h, this estimator considers the same discretization scheme
on a systematically coarser grid, say 2h. If, for brevity, one de�nes the grid function bh whose
Pth component equals (

∫
��P

b d�)=��P (i.e. the right-hand side of (2)), then on grid 2h the
relations which correspond to (2) and (3) are

N2h�2h + �2h = b2h (8)

N2h�∗
2h = b2h (9)

From (6) and (7) it is deduced that

I 02h�2h ≈ 2pI 0h �h (10)

I 02h�2h ≈ 2pI 0h �h (11)

A simple estimate of the truncation error begins by trying to estimate �2h. Equation (8)
cannot be used to calculate �2h because the exact solution �2h is not known. However, since
the solution �∗

h on grid h is more accurate than �
∗
2h, one may use it to approximate the exact

solution. Therefore, an estimate for �2h comes by substituting I 2hh �
∗
h instead of �2h in (8):

�2h ≈ b2h − N2h(I 2hh �∗
h)≡ �h2h (12)
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The quantity �h2h=b2h−N2h(I 2hh �∗
h) is called the relative truncation error of grid 2h with respect

to grid h (it is used in the context of FAS multigrid methods). It can be readily calculated
given the two grids h and 2h, and the solution �∗

h on the �ne grid. It is also dependent on
the restriction operator I 2hh . Adding �

h
2h to the left-hand side of (9) makes the solution of this

system equal to the �ne grid solution I 2hh �
∗
h , just like adding �2h to the left-hand side of (9)

makes the solution of this system equal to the exact solution �2h.
Since �h2h is an approximation to �2h, one can use (10) to obtain an approximation for

�h. However, a more accurate estimate is possible. If N
=
2h(�

∗
2h) is the Jacobian matrix of the

discrete operator N2h at �∗
2h and the grid 2h is �ne enough such that the di�erences between

the functions �2h, I 2hh �
∗
h and �

∗
2h are small enough then the following hold:

N2h�2h ≈N2h�∗
2h + N

=
2h(�

∗
2h)(�2h − �∗

2h)⇒N=2h(�
∗
2h)(�2h − �∗

2h)≈ −�2h (13)

N2hI 2hh �
∗
h ≈N2h�∗

2h + N
=
2h(�

∗
2h)(I

2h
h �

∗
h − �∗

2h)⇒N=2h(�
∗
2h)(I

2h
h �

∗
h − �∗

2h)≈ −�h2h (14)

The second approximate relation of (13) derives from the �rst one due to (8) and (9),
and similarly the second approximate relation of (14) derives from the �rst one due to the
de�nition of �h2h and (9). Using the fact that �2h=�2h−�∗

2h in (13), and the fact that I
2h
h �

∗
h −

�∗
2h=(�2h − �∗

2h)− (�2h − I 2hh �∗
h)≈ �2h − I 2hh �h in (14), there result, respectively,

N=2h(�
∗
2h)�2h ≈ −�2h (15)

N=2h(�
∗
2h)(�2h − I 2hh �h) ≈ −�h2h (16)

But (16) can change further by deducing from (11) that I 2hh �h ≈ �2h=2p so that �2h − I 2hh �h ≈
[(2p − 1)=2p]�2h. Therefore, (16) gives

2p − 1
2p

N =2h(�
∗
2h)�2h ≈ −�h2h (17)

Comparing (15) and (17) one gets

�2h ≈ 2p

2p − 1 �
h
2h (18)

and using (10) one arrives at the �nal truncation error estimator

�h ≈ 1
2p − 1 I

h
2h�

h
2h (19)

Summarizing, to estimate the truncation error: �rst solve the system on grid h, second
restrict the solution to grid 2h, third calculate the relative truncation error by (12), and �nally
apply (19). For this estimate to work it is crucial that the operator N2h is constructed using the
same discretization schemes as Nh. Actually, it is not necessary to use grid 2h, any multiple
rh will do and (19) holds with r in place of 2. Also to ensure that the errors introduced
in the restriction of the �ne grid solution do not spoil the truncation error estimate it would

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:103–130
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be a good idea to use in (12) a restriction operator I 2hh of order higher than the order p
of the discretization. This will ensure that as the grid is re�ned the error introduced by the
restriction operator will eventually become negligible compared to the truncation error. Also
it must be stressed that in the presentation so far the discrete systems have been written so
that they express quantities per unit volume. As has already been pointed out, �nite volume
methods usually construct discrete systems which approximate the total �uxes and forces on
each CV. Therefore, after restriction of the velocity and pressure obtained on the �ne grid
and application of the coarse Navier–Stokes operator one obtains the product ��P�h2h;P for
each coarse CV. This quantity must be divided by the volume ��P of each CV to obtain �h2h
before (19) can be applied.
Finally, it is appropriate to discuss the implications of the approximate solution of the

discrete systems by iterative solvers. Indeed, it is not possible in general to solve the discrete
Navier–Stokes system exactly, but the residual may be made as small as desired, up to machine
precision, by performing an appropriate number of iterations. If �∗k

h is the approximate solution
to system (3) after iteration k and rkh is the associated residual, then

Nh�∗k
h = bh − rkh (20)

Subtracting (20) from (2), and (3) from (2) one gets, respectively,

Nh�h − Nh�∗k
h = −�h + rkh (21)

Nh�h − Nh�∗
h = −�h (22)

Comparing (21) with (22) it is easy to see that the solution �∗k
h corresponds to a ‘truncation

error’ �h − rkh , just as solution �∗
h corresponds to the truncation error �h. To attain the full

accuracy that a �nite volume method can o�er the residual should be reduced to the level of
the truncation error in every CV of the grid. Furthermore, to accurately estimate the truncation
error, the residual should be smaller than the truncation error in every CV, say rkh;P60:1�h;P
for every CV P. Therefore, for convergence of the iterative method one should not monitor the
mean residual but the residual=truncation error ratio in every CV. The residual acts as a source
of algebraic error �∗

h −�∗k
h , just as the truncation error acts as a source of discretization error,

see Reference [12]. Therefore, a high residual in one region may generate a high algebraic
error in another where the residual itself is small. On the other hand, there is no point in
reducing the residual far below the truncation error, as (21) and (22) indicate: The algebraic
error �∗

h − �∗k
h would reduce, but the exact error �h − �∗k

h would not. Again, usually the
discrete systems of �nite volume methods are such that the quantity ��P · rkh;P is more easily
attainable for each CV.

4. SECOND-ORDER FINITE VOLUME DISCRETIZATION FOR THE
NAVIER–STOKES EQUATIONS

Here, the particular discretization schemes which will be used in Section 6 to test the method
are brie�y described. The two-dimensional stationary incompressible Navier–Stokes equations
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under constant density � and viscosity �, integrated over a CV P of volume ��P are written
in Cartesian coordinates as

Nxh;P(u; v; p)≡ 1
��P

[∮
SP
�V · nu dS −

∮
SP
�∇un dS +

∮
SP
pi · n dS

]
=0 (23)

Nyh;P(u; v; p)≡ 1
��P

[∮
SP
�V · nv dS −

∮
SP
�∇v · n dS +

∮
SP
pj · n dS

]
=0 (24)

Nmh;P(u; v) ≡ 1
��P

∮
SP
�V · n dS=0 (25)

where SP is the surface of CV P; n is the outward normal unit vector at each point of the
surface, i and j are the unit vectors in the x- and y-directions, u and v are the components
of the velocity vector V = ui + vj, and p is the pressure.
The boundary of each CV will be composed of a number of straight faces, each of which

separates it from another single CV or from the exterior of the computational domain. Figure 1
shows a face f separating two CVs, with centroids P and N . The centre of the face is denoted
by c, and c′ denotes the point on the line PN which is closest to c. Also points P′ and N ′

are such that the segment P′N ′ is of the same length as PN , and is perpendicular to the face
f, and its midpoint is point c. The part of the grid shown in Figure 1 exhibits skewness,
that is, the line joining P and N does not pass through the centre c of face f. It is also
non-orthogonal, which means that the angle � between PN and the face normal is non-zero.
Finally, if the middle of the line segment PN is far from face f then the grid will also be
said to exhibit expansion.
The gradient operator is frequently used in discretization schemes and here it will be ap-

proximated using the least squares method suggested in Reference [4]. This method assigns
to the discrete gradient ∇h of the variable �h at the centre of a CV P the appropriate value so
that the sum �N{[��N − (∇h�h)P ·�rN ]=|�rN |}2 is minimized (the index N runs through all
neighbours of P, and ��N =�h;N − �h;P, �rN =N − P). See Reference [11] for an explicit
expression for ∇h in the two-dimensional case. In the following, ∇x

h , ∇y
h will denote the two

Cartesian components of ∇h.

P

N
c

c'

P'

N'
θ

f

Figure 1. Geometry around a face f separating control volumes P and N .
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The Navier–Stokes equations will be discretized by approximating the �uxes and forces on
each CV face, using the same or similar schemes as in Reference [12]. In the following, an
overbar denotes a value obtained by linear interpolation at point c′ from the values at points P
and N , and a subscript c denotes a kind of linear interpolation, suggested in Reference [12],
which accounts for skewness and approximates the value at point c as

�h; c=(�h)c′ + (∇h�h)c′ · (c − c′) (26)

Also, the value of � at point P′ is approximated as

�h;P′ =�h;P + (∇h�h)P · (P′ − P) (27)

Then, the various terms of the x-momentum equation are discretized as

1
��P

∮
SP
�V · nu dS ≈ 1

��P

∑
f∈fP

Fh;fuh; c ≡Cx∗h;P(uh; vh; ph) (28)

1
��P

∮
SP
�∇u · n dS ≈ 1

��P

∑
f∈fP

�Sf
uh;N ′ − uh;P′

|N ′ − P′| ≡Dx∗h;P(uh) (29)

− 1
��P

∮
SP
pi · n dS ≈ − 1

��P

∑
f∈fP

ph; cnxfSf ≡Px∗h;P(ph) (30)

In the above, fP is the set of all faces of CV P and nxf, n
y
f are the Cartesian components of

the outward unit vector nf which is perpendicular to f. Also Fh;f is the discrete mass �ux
through face f, to be de�ned shortly. The y-momentum equation is discretized analogously,
while the continuity equation is discretized as

1
��P

∮
SP
�V · n dS ≈ 1

��P

∑
f∈fP

Fh;f ≡Nm∗
h;P(uh; vh; ph) (31)

The sum of the approximate discrete operators (28)–(30) is the discrete x-momentum opera-
tor Nx∗h (uh; vh; ph)=C

x∗
h (uh; vh; ph)−Dx∗h (uh)− Px∗h (ph), which tries to approximate the exact

x-momentum operator Nxh (23). The associated truncation error with respect to the exact
solution (u; v; p) of (23)–(25) is �xh=N

x
h (u; v; p) − Nx∗h (uh; vh; ph). Similarly, the discrete

y-momentum and continuity operators approximate the exact operators (24) and (25) up to
truncation errors �yh =N

y
h (u; v; p)−Ny∗h (uh; vh; ph), �mh =Nmh (u; v)−Nm∗

h (uh; vh; ph). The trunca-
tion errors �xh, �

y
h , �

m
h will be estimated using (19). The above schemes are in general considered

to have truncation errors of O(h2) (see Reference [12]) so p=2 will be used in (19).
Most of the above discretization schemes use linear interpolation, which has the e�ect that

the image Lh�h of a discrete operator Lh which uses it may be smooth even if �h contains
a component which oscillates from CV to CV (i.e. with period of oscillation equal to two
CVs). Or equivalently, the solution �h of the system Lh�h= bh may contain oscillations even
if bh is smooth. A special case of this is the so-called checkerboard distribution depicted
in Figure 2: If, for example, the pressure at the CV centres assumes the values shown in
the �gure, then obviously linear interpolation gives zero pressure at the face centres, and the
operator Px∗h (30) gives zero pressure force on each CV. At domain boundaries pressure is

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:103–130



TRUNCATION ERROR ESTIMATE FOR COLOCATED FINITE VOLUME SCHEMES 111

+1 +1

+1 +1

+1 +1

+1 +1

-1 -1

-1 -1

-1-1

-1 -1

Figure 2. Checkerboard distribution of a variable on a Cartesian grid.

extrapolated from the interior, and such an oscillating pressure �eld would result in non-zero
oscillating forces along the boundary CVs, which means that an oscillating pressure �eld is
not part of the null space of Px∗h . Therefore, one may be tempted to think that according to
(22), as h→ 0 if �h → 0 then p∗

h will tend to the exact pressure ph which is oscillations free.
However, the oscillating pressure �eld is close to being an eigenvector of Px∗h corresponding
to a zero eigenvalue, and the smaller the grid spacing h the closer it is to such an eigenvector.
In practice this means that pressure oscillations may indeed appear in the discrete solution
and they may be very resistant to grid re�nement.
A similar, but not as bad, situation holds also for the velocity �eld. The convection oper-

ators (28) and (31) produce images which may be smooth even if the velocity components
oscillate at CV centres. However, the discrete viscous force operator (29) involves direct
velocity di�erences between adjacent CV centres and therefore always re�ects velocity oscil-
lations to its image. Consequently the phenomenon of oscillations in the u∗

h , v
∗
h �elds becomes

less intense as the Reynolds number decreases, and, in fact, oscillations diminish with grid
re�nement, and are rarely a problem for incompressible �ows. The discrete gradient operator
∇h may also produce a smooth image when applied to an oscillating �eld.
Pressure oscillations are a serious problem for colocated grids which has been addressed by

many researchers. One way around it is to observe that the pressure forces are calculated from
values of pressure estimated at face centres using linear interpolation. These values have a
much smaller discretization error than the oscillating values at CV centres. So after obtaining
the solution to the discrete system one may discard the pressures at the CV centres and
consider the pressure �eld to be given by the pressures at the face centres. But rather than
obtaining an oscillating pressure �eld and eliminating the oscillations afterwards it is more
desirable to obtain an oscillations-free �eld altogether, to avoid problems for the algebraic
solvers of the discrete system. One possibility is to use another discrete operator for the
pressure force, one which re�ects pressure oscillations to its image, like the one proposed in
Reference [13]. However, the most popular method involves adding an arti�cial pressure term
to the discrete expression for the mass �ux through a face, generally known as momentum
interpolation.
Momentum interpolation was originally proposed in Reference [14]. Since then many

variants of this technique have been proposed but most of them share the feature that the
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discretization of the face mass �uxes is interlinked with a SIMPLE-like solution method (there
are a few exceptions, e.g. Reference [10]). SIMPLE-like solution algorithms linearize the mo-
mentum equations to obtain linear systems for the velocity components, whose Pth equation
has the form

AuP;Puh;P +
∑
N
AuP;N uh;N =Q

u;\p
P − ∑

f∈fP
ph; cSfnf · i (32)

where N runs over all neighbours of CV P, and Auij is the (i; j)th coe�cient of the matrix of
coe�cients of the linear system for u. If face f separates CVs P and N and nf points from
P to N (see Figure 3) then the momentum interpolation variant of Reference [12], which is
more appropriate for our discretization, approximates the mass �ux through f as

Fh;f=�cSf

(
Vh; c · nf + ami SfAuf

[
(ph;P − ph;N )− 1

2
[(∇hph)P + (∇hph)N ] · (P −N)

])
(33)

where

Auf=
1
2(A

u
P;P + A

u
N;N ) (34)

Here, Vh; c= uh; ci + vh; c j, and ami is a real factor introduced for better control of the pressure
term. Most researchers use ami =1. Obviously, (33) is equivalent to interpolation (26) but
with the addition of a pressure term. However, mass �uxes are functions of velocity only and
therefore the pressure term relates completely to the truncation error. Therefore, the magnitude
of the pressure term should diminish as h→ 0, at a rate which is at least 2nd order to preserve
the overall order of accuracy of the discretization. Indeed, using Taylor series one can show
that, if ∇h is at least 2nd-order accurate, then

(ph;P − ph;N )= 1
2 [(∇hph)P + (∇hph)N ]·(P −N) +O(h3) (35)

P
Nc

V1

V2

P'
N'

PP'

VV1

VV2

NN'

n f

Figure 3. Imaginary control volume around a face and related notation.
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In addition, Sf ∈O(h) and Auf ∈O(1), so the pressure part of the discrete mass �ux is

ami�c
S2f
Auf

[
(ph;P − ph;N )− 1

2
[(∇hph)P + (∇hph)N ] · (P −N)

]
∈O(h5) (36)

By dividing by the volume ��∈O(h2) of a CV which shares the face f one sees that
(36) contributes a O(h3) component to the truncation error. In fact, in Reference [11] it is
shown that under special but not uncommon circumstances the sum of the terms (36) for two
opposite faces of a quadrilateral CV becomes O(h6) because the leading terms of their Taylor
expansions cancel out. This corresponds to a O(h4) contribution to the truncation error.
The pressure part (36) of the discrete mass �ux consists of the di�erence between two parts,

one involving the direct pressure di�erence ph;P −ph;N between the centroids of the adjacent
CVs, and one involving the pressure gradient. The part involving the pressure gradient is
again insensitive to pressure oscillations, but the part involving the direct pressure di�erence
is not. Indeed, if pressure oscillates from one CV to the other then the pressure di�erence
will also oscillate from face to face, and so will the discrete mass �ux. Therefore, the discrete
Navier–Stokes and continuity operators do re�ect pressure oscillations to their image, which
removes pressure oscillations from the discrete solution.
The main disadvantage of expression (33) is that to calculate the mass �uxes Fh one needs

the coe�cients of the matrix Au, but to calculate the coe�cients of Au one needs the mass
�uxes Fh! Therefore, given a discrete �ow �eld uh, vh, ph one cannot directly evaluate the
mass �uxes through the faces of the CVs but has to resort to an iterative procedure. For our
truncation error estimator this means that the expression (36) cannot readily be evaluated on
the coarse grid 2h. One may argue that since the magnitude of the pressure term of Fh reduces
at a rate which is faster than 2nd order then it may simply be omitted on grid 2h. On the
other hand, including this term on grid 2h allows for a cleaner approach which may also be
used with up to 4th-order accurate overall discretization schemes. Indeed, schemes based on
higher order rather than linear interpolation may also allow for oscillating pressure �elds, and
this is why in Reference [15] momentum interpolation is used in the context of a 4th-order
accurate discretization.

5. NEW MOMENTUM INTERPOLATION

One idea to overcome the above problem is to use in (33) only the viscous-part of Au which
contains only geometric terms and does not depend on Fh. However, this leads to the coe�cient
of the pressure-term of the mass �ux being too big, resulting in divergence of the solution
method unless a very small value of ami is used (in Reference [16] ami =0:04 is used). This
in turn was found not to eliminate the pressure oscillations at some regions of the �ow �eld.
Therefore, the velocity �eld has to be taken into account, and this is done through Au. The
reasoning behind the choice of the coe�cient of the pressure term is the following: Equation
(32) suggests that the contribution of pressure to the value of u at point P is

�puh;P=− 1
AuP;P

∑
f∈fP

ph; cSfnf · i ≈ − 1
AuP;P

(∇x
h ph)P��P (37)
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where �puh;P is the part of uh;P which is due to pressure forces. The (discrete) Gauss theorem
is used to obtain the second equality. Of course the above assumption is very crude because in
(32) the coe�cients of Au are also functions of uh and vh, and uh;N also depend on the pressure
�eld, and also upwind di�erencing is used to form Au while the central di�erence scheme is
imposed through deferred correction. However, (37) gives a feel of the importance of pressure
in determining uh. A similar relation can be derived for vh, and, in fact, the coe�cients of
Av are nearly equal to the coe�cients of Au, except may be near some boundaries. Therefore,
in Reference [12] the assumption is made that a similar relation holds for the component of
velocity in any direction. In particular if unh; c is the component of velocity normal to face f
at c; unh; c=Vh; c · nf, then it is assumed that

�punh; c=− 1
Auf
(∇hph)c · nf��f (38)

where the product (∇hph)c · nf equals the pressure gradient in the direction of nf at the face
centre. The volume ��f= Sf · (N − P) · nf is de�ned as the volume of the imaginary CV
around face f depicted by dashed line in Figure 3, which has two sides parallel to face f
and passing through points P and N , and two sides perpendicular to f passing through its
vertices. If one further approximates (∇hph)c as the mean of (∇hph)P and (∇hph)N then (38)
becomes:

�punh; c=
Sf
Auf

[
1
2
[(∇hph)P + (∇hph)N ] · (P −N)

]
(39)

Actually, P′ and N ′ (see Figure 3) should be used instead of P and N in (39) but since the
pressure contribution is very approximate this substitution is acceptable. Because of (35) one
can substitute (39) by

�punh; c=
Sf
Auf
(ph;P − ph;N ) (40)

By substituting the pressure contribution (39) to the normal component of velocity by (40)
and using the midpoint rule that Fh;f=�cSfunh; c one arrives at (33).
The above reasoning, although it does not sound very solid, in practice gives an appropriate

magnitude to the coe�cient of the pressure term of the discrete mass �uxes, with ami ≈ 1.
If ami is much smaller then the method fails to eliminate the oscillations, while if ami is
much larger then the system is di�cult to solve and divergence occurs on grids of reasonable
�neness (of course if the grid is �ne enough then the signi�cance of the pressure term will
diminish no matter what the value of ami).
Now, to uncouple the mass �ux discretization from the iterative solution method, in the

present work Auf will be substituted in (33) by a pseudo-coe�cient Af which depends di-
rectly on the grid geometry around face f and on the velocity at the adjacent CVs. Just
as AuP;P is the coe�cient by which uh;P is multiplied in the linearized discrete x-momentum
equation of CV P, Af is constructed as the coe�cient by which unh; c would be multiplied in
a hypothetical linearized discrete n-momentum equation for the imaginary CV around f in
Figure 3. The construction of the hypothetical momentum equation proceeds as follows. First
de�ne the points PP′, NN ′, VV1, VV2 such that P′ lies midway between c and PP′, etc. (see
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Figure 3). Starting with viscous forces, for the side of the imaginary CV which passes through
N , the n-component is discretized as∫

N
�∇un · n dS ≈� u

n
h;NN ′ − unh; c
|NN ′ − c| Sf=�

unh;NN ′ − unh; c
2|N ′ − c| Sf (41)

where un is the component of velocity normal to face f. A similar scheme will be used for
the viscous component over the face through P. For the face through V1 it will be assumed
that ∫

V1
�∇un · n dS ≈�u

n
h;VV1 − unh; c
2|V1− c| SV (42)

where SV = (N − P) · nf is the length of each of the faces which are perpendicular to f.
A similar assumption is made for the face which passes through V2. Therefore, the total
contribution of viscous forces to the coe�cient of unh; c is

Aviscf =
�Sf

2|N ′ − c| +
�Sf

2|P′ − c| +
�SV

2|V1− c| +
�SV

2|V2− c| (43)

This can be simpli�ed because 2|V1−c|=2|V2−c|= Sf. Also since one is only interested in
an approximate value for Af, (43) can be further simpli�ed by assuming that c lies midway
between N ′ and P′ so that 2|N ′ − c|=2|P′ − c|=(N −P) ·nf= SV . Therefore, (43) becomes

Aviscf =2�
[
Sf
SV
+
SV
Sf

]
(44)

If � and=or � are not constant, then the Navier–Stokes equations include other viscous
force components as well, but usually in the SIMPLE framework they do not contribute to
the matrices Au, Av. Therefore, the viscous contribution (44) remains the same.
For convection, in the original SIMPLE method the coe�cients of Au are formed using the

upwind di�erence scheme while the central di�erence scheme is enforced through deferred
correction. Therefore, an upwind-like approach will be used for the convective part of Af. It is
assumed that the velocity at the centre of each face of the imaginary CV equals Vh; c and that
the mass �ux through each face is given by the usual midpoint rule, F =Vh; c · n · S. Whatever
the direction of Vh; c mass will �ow out of the imaginary CV only through two of the faces,
one parallel to f and one perpendicular. Therefore, according to the upwind philosophy only
these two faces will contribute to Af. If by rotating the vector x 90◦ anticlockwise one gets
the vector rot(x), then rot(nf) is the unit vector which is perpendicular to the faces which
pass through V1 and V2, and the sum of the convective contributions to Af is

Aconvecf =�cSf|Vh;c · nf|+ �cSV |Vh;c · rot(nf)| (45)

It is reminded that SV =(N − P) · nf. In total the value of Af is therefore
Af=Aconvecf + Aviscf (46)

The proposed momentum interpolation is therefore to use (33) with Auf replaced by Af
given by (46), (45) and (44). The new method also overcomes the well-known problem of
the dependency of (33) on the underrelaxation factor of the solution method and the time
step for transient �ows, see References [17, 18].
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Before ending this section it should be mentioned that at �rst there was an e�ort to use
central di�erencing for the convective part of Af which resulted in

Aconvecf = 1
2(Vh;N −Vh;P) · nfSf (47)

However, this did not work. It seems that (47) gives too small a value for the convective part
because for smoothly varying �elds the di�erence Vh;N −Vh;P will be small. Therefore, Af will
again be dominated by the viscous, geometric terms and the problems mentioned earlier will
arise. This also highlights the importance of using upwind di�erencing for convection for the
construction of the matrix of coe�cients of several solution methods including SIMPLE.

6. TESTING OF THE METHOD

The method is tested on two cases with analytic solution, which allows direct comparison
between the truncation error estimate and the actual truncation error: A particular lid-driven
cavity problem, and the �ow between concentric cylinders.

6.1. Lid-driven cavity

6.1.1. Momentum interpolation. We start with a few comments on the new variant of mo-
mentum interpolation. Extensive results will not be presented because it was observed that
in general this variant o�ers nearly identical accuracy and rates of algebraic convergence (if
SIMPLE is used) as classic momentum interpolation. Some results of applying the method to
the simulation of the �ow in a skew lid-driven cavity of side L=1m with side walls inclined
at 45◦, and the top lid moving at Vlid =1m=s (see Reference [19]), at Re=1000 (�=1kg=m3,
�=0:001 Pa s) are presented here. The pressure is �xed to zero at (x; y)= (0:5; 0:01), where
the origin (x; y)= (0; 0) is at the lower-left corner. This is not the lid-driven cavity prob-
lem with analytic solution which will be used in the next section to assess the truncation
error estimator, but it allows testing of the momentum interpolation on grids which are not
Cartesian.
The problem was solved using uniform grids, with three di�erent schemes for the mass

�uxes: (1) linear interpolation (mi0), i.e. with term (36) completely absent from (33), (2)
classic momentum interpolation (mi1), and (3) new momentum interpolation (mi2). Figure 4
shows the pressure distribution along the horizontal line passing through the centres of the
CVs which lie immediately above the line y=3H=4, where H =L sin 45◦ is the height of the
cavity, on two grids of di�erent density.
If mi0 is used then pressure oscillations appear in the solution, whose amplitude increases

towards the interior of the domain, and which do not diminish with grid re�nement. In this
case the oscillating component of the pressure �eld is close to being an eigenvector corre-
sponding to the zero eigenvalue, which means that small changes in the algebraic residual
may re�ect large changes in the amplitude of the oscillations. To minimize the possibility that
the oscillations are a product of insu�cient residual reduction, iterations were continued until
the residual was below 10−5 N=m3 in each CV of the grid. Also the solution was obtained
using two di�erent initial estimates, one being the prolonged solution of the immediately
coarser grid, and the other being the smooth solution obtained with momentum interpolation,
but no signi�cant di�erences were observed. If momentum interpolation is used then a smooth
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Figure 4. 45◦ skew cavity, Re=1000: Pressure distribution along the CV centres just above the line
y=3H=4 (H =height of cavity), on grids 32× 32 (left) and 128× 128 (right).

pressure �eld is obtained, and on the grid 128× 128 the results of the two variants of mo-
mentum interpolation are indistinguishable.
Pressure oscillations also have a detrimental impact on the convergence rate of the SIMPLE

algorithm, which was used to solve the discrete systems. For example, to solve the problem
on the 64× 64 grid up to the 10−5 residual, using the solution of the 32× 32 grid as ini-
tial estimate, 24 000 iterations were required in the ‘mi0’ case, as opposed to 485 and 479
iterations in cases ‘mi1’ and ‘mi2’, respectively (underrelaxation factors au=0:8, ap=0:3,
and a second pressure correction for grid non-orthogonality were used as suggested in Ref-
erence [12]). If multigrid is used things would be even worse as pressure oscillations which
developed in coarse grids would be prolonged to the �ne ones. Also it is very important to
note that for the coe�cients of the pressure-correction system of the SIMPLE algorithm, (34)
must be used instead of (46), otherwise the method diverges. This may sound strange since
both formulae give similar values at convergence, but they may di�er signi�cantly at the �rst
stages of iteration because (34) is computed from mass �uxes which are calculated after the
pressure-correction step, while (46) from velocities obtained before this step. Finally, it was
found that with ‘mi2’ for extremely coarse grids it may be necessary to use ami¡1 otherwise
SIMPLE may diverge, unlike if ‘mi1’ is used, because Af (46) is a little smaller than Auf
(34) (due to the fact that the velocity underrelaxation factor is not taken into account in Af,
unlike Au). This holds also for multigrid methods which use very coarse grids.

6.1.2. Analytic solution. To test the truncation error estimator we apply it to the lid-driven
cavity problem of Reference [20], which has an analytic solution: Fluid of �=1kg=m3,
�=0:001Pas is enclosed in a square cavity, whose sides of length L=1m are aligned with the
x- and y-axes. The top wall (lid) moves with a horizontal velocity u(x; 1)=16(x4−2x3 + x2),
and there exists a body force b in the y-direction:

b(x; y)=8�[24F(x) + 2f′(x)g′′(y) + f′′′(x)g(y)] + 64[F2(x)G1(y)− g(y)g′(y)F1(x)] (48)
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where

f(x) = x4 − 2x3 + x2

g(y) = y4 − y2

F(x) =
∫
f(x) dx

F1(x) =f(x)f′′(x)− [f′(x)]2

F2(x) =
∫
f(x)f′(x) dx=0:5[f(x)]2

G1(y) = g(y)g′′′(y)− g′(y)g′′(y)

where the primes denote di�erentiation. The exact solution to this problem (Equations
(23)–(25) with the addition of (− ∫��P b d�)=��P in the left-hand side of (24)) is

u(x; y)=8f(x)g′(y) (49)

v(x; y)= − 8f′(x)g(y) (50)

p(x; y) = 8�[F(x)g′′′(y) + f′(x)g′(y)] + 64F2(x){g(y)g′′(y)− [g′(y)]2} (51)

(actually any pressure �eld p′=p+c will do, for any constant c). The problem is discretized
using the schemes of Sections 4 and 5, plus the body force is discretized with the midpoint
rule as

∫
��P

b d�≈ b(xP; yP)��P. Since the exact solution is known, the exact truncation
errors �xh, �

y
h , �

m
h of the operators N

x∗
h , N

y∗
h , N

m∗
h can be calculated. The calculation of �yh

requires integration of the body force over each CV, so we will focus on �xh, �
m
h .

The problem is solved on a uniform and a non-uniform series of structured grids of up
to 256× 256 CVs. The non-uniform grids are such that, if each CV is assigned a horizontal
index i and a vertical index j, and �xi; jh , �y

i; j
h are the horizontal and vertical sizes of

CV (i; j) of grid h, respectively, then there is a constant rh such that �x
i+1; j
h =�xi; jh = rh for

x¡0:5 and �xi+1; jh =�xi; jh =1=rh for x¿0:5, and similarly for �y. The expansion ratio rh for
grid 256× 256 is such that the boundary CVs which touch the centrelines have a ratio of
�x=�y=10:1 or 1:10. Grid 2h comes from grid h by removing every second grid line, so for
the non-uniform grids rh=

√
r2h and rh ranges from about 1.156 on grid 32× 32 (this grid is

shown in Figure 5) to about 1.018 on grid 256× 256. Algebraic residuals were dropped below
10−8 in every CV. Figure 6 shows the exact distributions of �xh and �

m
h on the 256× 256 grids.

In the following, �x∗h , �
y∗
h , �

m∗
h will denote the truncation error estimates (19), and �uh, �

v
h, �

p
h

the discretization errors. Figures 7 and 8 (left) show the distributions of �uh along the centres of
the CVs which lie just to the right of the vertical centreline (x = 0:5), and the distributions of
�ph (�

p
h was set equal to zero at the centre of the CV of the lower-left corner of the domain)

along the centres of the CVs which lie just above the horizontal centreline (y=0:5). The
errors are displayed in logarithmic scale, and from the distance between the distributions it
is veri�ed that the particular �nite volume method is 2nd-order accurate. Convergence is not
as regular for the non-uniform grids as for the uniform ones, and, in fact, the discretization
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Figure 5. Left: the 32× 32 CV non-uniform grid for the lid-driven cavity problem. Right: the 64× 16
CV grid for the concentric cylinders problem.

Figure 6. The distributions of −�xh (left) and −�mh (right) on the 256× 256 uniform
grid (top) and non-uniform grid (below).
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Figure 7. Top: Distributions of |�uh| along CV centres just to the right of
x=0:5, of the solution of the discrete Navier–Stokes system whose right-hand
side equals zero (left—in red), or equals minus the truncation error esti-
mate (right—in blue), on various uniform grids. Below: Similarly, for |�ph |

along CV centres just above y=0:5.

errors on coarse non-uniform grids decrease at a rate which is faster than 2nd order, but tends
to become 2nd order with re�nement.
For the calculation of �h2h (12) two di�erent restriction operators were used. The �rst is

proposed in Reference [12]:

(I 2hh �
∗
h)P=

1
4

∑
C∈CP

(�∗
h;C + (∇h�∗

h)C · (P −C)) (52)
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Figure 8. Like Figure 7, but for solutions on non-uniform grids.

where CP is the set of 4 CVs of grid h which cover CV P of grid 2h—the CVs of the
set CP will henceforth be called the children of the parent P. The other is proposed in
Reference [11]:

(I 2hh �
∗
h)P =

1
4
∑
C∈CP

{�∗
h;C + (∇h�∗

h)C · (P −C)

+
1
2
[(�∗

xx)h;C�x
2
C + (�

∗
yy)h;C�y

2
C + ((�

∗
xy)h;C + (�

∗
yx)h;C)�xC�yC]} (53)
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where �xC = xP − xC , etc., and (�∗
xx)h, etc. are the approximate second derivatives of �

∗ on
grid h, which are calculated by applying a least squares di�erentiation again to the components
of ∇h�∗

h . For the second di�erentiation, the neighbours of each CV C are considered to be
its siblings (i.e. the CVs which have the same parent as C). In Reference [11] it is shown
that (52) is 2nd-order accurate as long as ∇h is at least 1st-order accurate, while (53) is
2nd-order accurate if ∇h is 1st order, and 3rd order if ∇h is at least 2nd order. In our case
∇h is 2nd-order accurate except for the boundary CVs where it is 1st order. For prolongation
in (19), the following 2nd-order accurate operator was used:

(I h2h�2h)C =�2h;P + (∇2h�2h)P · (C − P) (54)

The vertical centreline is not appropriate for the study of the truncation error because certain
derivatives of the �ow variables become zero there and this causes the leading term of the
truncation error to diminish, as shown in Figure 6. This is shown clearly in Figure 9, which
shows |�mh | along the centres of the CVs just to the right of the vertical centreline, for a series
of uniform grids: the distance between the distributions of consecutive grids indicates that �mh
reduces almost at a 4th-order rate. The estimate |�m∗

h | is also plotted in the same �gure, and
it is clear that it captures the overall shape of �mh but it is always about 4 times higher. This
is not surprising since the assumption that p=2 is made in (19).
In Figure 10, |�xh| is displayed along the CV centres just to the right of x=0:75 on the

uniform grids. Here, �xh indeed reduces at a 2nd-order rate. Two estimates �
x∗
h are also shown,

one using (52) and one using (53). The one using (53) appears to be more accurate, which
is veri�ed by the graph of the quantity |(�xh− �x∗h )=�xh|. Since the estimate (19) is based on the
assumption that the magnitude of the truncation error is determined by its leading term, the
di�erence �xh − �x∗h should be of the order of the second leading term of the truncation error,
and therefore |(�xh − �x∗h )=�xh| should be O(h) (except if only odd or even powers of h appear
in the expansion of �xh, in which case |(�xh − �x∗h )=�xh| should be O(h2)). For the estimate using
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Figure 9. Absolute value of �mh (black) and �
m∗
h (grey) along the CV centres just to the

right of x=0:5, for various uniform grids.
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Figure 10. Left: The top diagram shows the distributions of |�xh| (black) and |�x∗h | (purple: using (52),
cyan: using (53)) at the CV centres just to the right of x=0:75, on various uniform grids, and the
bottom diagram shows the corresponding quantities |(�xh − �x∗h )=�xh|. Right: Similar to the left side, but

for |�mh |, |�m∗
h | at CV centres just above y=0:75.

(52) this quantity reduces at a rate which is less than 1st order while for the estimate using
(53) it reduces at a rate which is faster than 1st order (but less than 2nd order). At y≈ 0:32
and y≈ 0:8 this quantity does not reduce, because the truncation error there reduces at a rate
which is faster than 2nd order (actually it changes sign, see Figure 6). Therefore, a situation
similar to that shown in Figure 9 occurs there. Similar conclusions are drawn from Figure 10
concerning the distributions of �mh and �

m∗
h along the centres of the CVs just above y=0:75.

Again, the truncation error reduces at a 2nd-order rate, and the quantity |(�mh −�m∗
h )=�

m
h | reduces
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Figure 11. Left: Top: |�xh| (black) and |�x∗h | (purple: (52), cyan: (53)) at CV centres
just to the right of the i=4 grid line of the 4× 4 CV non-uniform grid (x≈ 0:88), on
various non-uniform grids; bottom: the corresponding quantities |(�xh − �x∗h )=�

x
h|. Right: Similar

to the left side, but for |�mh |, |�m∗
h | at CV centres just above the j=4 grid line of the

4× 4 CV non-uniform grid (y≈ 0:88).

at a rate which is a little faster than 1st order. In this case the estimate using (52) behaves
as good as that using (53), and the two estimates are nearly indistinguishable.
Figure 11 displays similar data but for the non-uniform grids. This time (�xh − �x∗h )=�xh does

not converge to zero if (52) is used, while if (53) is used then it decreases again at a rate
which is just above 1st-order. Oscillations which appear in the graph of (�xh − �x∗h )=�xh have
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Figure 12. �P|�uh; P| ·��P , �P|�vh; P| ·��P , �P|�ph; P|·��P of the solution of the original system (red
lines) and of the modi�ed system with −�x∗h , −�y∗h , −�m∗

h added to the right-hand side (blue lines).
The left diagram refers to the series of uniform grids (grid 4=32× 32 CVs, grid 7=256× 256 CVs),

and the right diagram to the series of non-uniform grids.

a period equal to twice the grid spacing of the �ne grid h, and so they must be due to the
prolongation operator (54). The behaviour of (52) is better for �m∗

h than for �x∗h .
Assuming that (�h − �∗h)=�h ∈O(h), as numerical experiments con�rm when (53) is used,

then �h= �∗h+�hO(h)= �
∗
h+O(h

p+1), where �h ∈O(hp). It follows that if instead of completely
dropping �h in (2) one substitutes it by �∗h , then the order of the approximation would increase
from p to p+1. This is con�rmed by numerical experiments: When −�x∗h , −�y∗h , −�m∗

h were
substituted instead of zero in the right-hand sides of the discrete Navier–Stokes and continuity
equations, respectively, the discretization errors reduced at a rate which is a little faster than
3rd-order, dropping by nearly an order of magnitude per grid. This is demonstrated in Figures 7
and 8 (right). The bene�ts appear smaller for non-uniform grids, but the distance between the
distributions shows 3rd-order accuracy also in this case. This is veri�ed also from Figure 12,
which shows the magnitude of the approximate integrals of the discretization errors over the
computational domain. The penalty is that the equations must be solved twice on each grid.
Similar investigations were conducted in Reference [8].

6.2. Flow between concentric cylinders

Next we consider �ow between two concentric cylinders, using a series of grids which exhibit
non-orthogonality, expansion and skewness. The inner cylinder has a radius R1 = 0:5m and is
still, and the outer cylinder of radius R2 = 1m rotates clockwise with a tangential velocity of
V2 = 1 m=s (angular velocity !2 = 1 rad=s). If we use polar coordinates r; � with the angle �
measured clockwise from the vertical axis Oy, then the solution to this problem is a velocity
�eld with a zero component in the r-direction and magnitude of V (r)=Ar+B=r where A=4=3,
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B= −1=3. The pressure, up to a constant, is given by p=�[A2r2=2−B2=(2r2)+2AB ln r], see
Reference [21]. The �uid has �=1kg=m3, �=0:01Pa s (viscosity does not a�ect the solution,
but it does a�ect the magnitude of the truncation error).
Structured grids are used: One family of grid lines consists of straight lines connecting the

two cylinders, making a 45◦ angle with the radial direction at the inner cylinder (henceforth
‘straight’ grid lines). The other family consists of concentric circles, similar to the cylin-
ders themselves (henceforth ‘circular’ grid lines). The �nest grid has 512× 128 CVs and
the circular grid lines lie at radial positions rj=0:75− 0:25 cos �j where �j=� · (j − 1)=128,
j=1; 2; : : : ; 129. The other grids come from removing every second grid line from the imme-
diately �ner grid. The 64× 16 grid is shown in Figure 5.
Figure 13 shows �xh and �

m
h on the �nest grid. The distribution of �

y
h is the same as �

x
h,

rotated by 90◦, and �mh is a function of r only. Again, the results are of 2nd-order accuracy as
Figure 14 shows. The behaviour of the truncation error estimates is similar to the example of
Section 6.1.2: The estimate based on (52) converges to the exact error (in the sense that the
ratio (�h − �∗h)=�h → 0) at a rate which is slower than 1st order, or does not converge at all,
while the estimate based on (53) converges faster than 1st order, nearly 2nd-order in some
cases. This is demonstrated in Figure 15.
This time, if one tries to increase the accuracy by adding −�x∗h , −�y∗h , −�m∗

h to the right-hand
sides of the Navier–Stokes equations, no solution may be obtained and the iterative procedure
does not converge. In fact, this is due to the modi�cation of the continuity equation, which
may result in the system having no solution. The modi�ed discrete continuity equation for a
CV P is ∑

f∈fP
Fh;f= − �m∗

h;P��P (55)

Each mass �ux Fh;f through a face of P also appears with opposite sign in the continuity
equation of the neighbour CV which also owns face f, unless f is a boundary face. Therefore,
the sum of the left-hand sides of (55) over all CVs of the grid equals the sum of mass �uxes
through the boundary faces, because the mass �uxes through interior faces cancel out. This
is zero for the present problem because all boundaries are solid walls. Therefore, the sum of

Figure 13. −�xh (left) and −�mh (right) on the 512× 128 grid.
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Figure 14. Left: �P|�uh; P| ·��P , �P|�vh; P| ·��P , �P|�ph; P| ·��P of the solution of the original system (red
lines) and of the modi�ed system with −�x∗h , −�y∗h , −�m∗

h added to the right-hand side (blue lines), for
the concentric cylinders problem (grid 3=32× 8 CVs, grid 7=512× 128 CVs). Right: |1−a�m| where

a�m is the mean value of |a�m| (56) in the domain.

the right-hand sides of (55) should also be zero, but this is not guaranteed by the present
method as described so far.
The sum

∑
P �

m
h;p ·��P equals zero because the truncation error of the approximation of

the mass �ux through a face f contributes with opposite sign to the continuity truncation
errors of the CVs on either side of f. Also, the sum

∑
P �

h;m
2h;p ·��P over all CVs P of the

coarse grid 2h is zero because the mass �uxes F2h which are calculated from the restricted
velocity and pressure �elds contribute with opposite sign to the relative truncation errors of
the CVs on either side of the face. This property is lost in converting the relative truncation
error on grid 2h into a truncation error estimate on grid h by (19)–(54). Replacing the
prolongation operator (54) by the operator (I h2h�2h)C =�2h;P does not necessarily correct the
problem because in the presence of grid skewness the parent CV of grid 2h may not cover
the same area as its children of grid h. However, the problem may be overcome by a simple
modi�cation of the prolongation operator: If P is a CV of grid 2h and C ∈ CP where CP is
the set of the children of P then

(
I h2h�

h;m
2h

)
C
is multiplied by a function a�mP de�ned by

a�mP =
�h;m2h;P ·��P∑

C∈CP (I
h
2h�

h;m
2h )C ·��C

(56)

which ensures that

∑
C∈Vh

�m∗
h;C :��C =

∑
C∈Vh

a�mP · (I h2h�h;m2h )C ·��C
2p − 1 =

1
2p − 1

∑
P∈V2h

[
a�mP

∑
C∈CP

(
I h2h�

h;m
2h

)
C

·��C
]

=
1

2p − 1
∑
P∈V2h

�h;m2h;P ·��P=0
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Figure 15. �xh, �

x∗
h (left) and �mh , �

m∗
h (right) at CVs immediately to the right of the

straight grid line which starts at (x; y)= (0; 0:5). The estimate using (53) is shown in
cyan, and the one using (52) in purple.

where the �rst equality comes from (19) with I h2h replaced by a
�m
P · I h2h, and the third equality

comes from (56). On smooth structured grids (i.e. which are constructed from distributions
of dimensionless variables 	; 
 which have continuous derivatives) skewness and expansion
tend to zero with grid re�nement, so a�mP → 1, and, in fact, it does so quite rapidly as Fig-
ure 14 (right) shows. The prolongation operator need not be modi�ed for �x∗h , �

y∗
h . With

this modi�cation it was possible to solve the system and to obtain a solution of higher yet
still 2nd-order accuracy, as demonstrated in Figure 14 (left). We were not able to propose
a de�nite explanation of why 3rd-order accuracy is not achieved, but it is likely that this is
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due to the boundary conditions. Indeed, in Reference [11] it is shown that simple boundary
conditions such as those used for the present problems, which are similar to those proposed
in Reference [12], result in �xh, �

y
h ∈O(1) at the boundary CVs. This can be seen also in

Figure 15, for �yh at r=1.

7. CONCLUSIONS

With the aid of a new momentum interpolation, a truncation error estimate has been im-
plemented and tested on smooth structured grids which exhibit non-orthogonality, skewness
and stretching. Under these conditions the estimate converges to the exact truncation error
in the sense that (�h − �∗h)=�h ∈O(h), provided that it uses a restriction operator of su�cient
accuracy. In this case the estimate may be used to increase the approximation order of the
discrete system, if the boundary conditions are chosen appropriately.
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